

Nitric Oxide Calculator Flow Chart

*Nitric Oxide Cylinder Concentration is always 800 ppm Desired dose (ppm) × total ventilator flow (l/min)

Cylinder concentration (ppm)* - desired dose (ppm)

Step 4 - What is the cylinder duration

Cylinder volume (L) ÷ iNOmax flow rate (l/min)

60 (mins) For cylinder duration in minutes omit the division by 60

Consider stabilisation & transfer time

Step 2 - Total Ventilator Flow Calculations
Hamilton – Neonate = (ExpMinVol (l/min) x 2*) + 3 l/min *
Hamilton - Paediatric/Adult
\leq 8kgs IBW / \leq 70cms height = (ExpMinVol (l/min) x 2*) + 4 l/min [#]
\geq 8kgs IBW / \geq 70cms height = ExpMinVol (l/min) + 4 l/min [#]
<u>Hamilton/Leoni - HiFlow</u> = HiFlow set rate
<u>Hamilton – CPAP/NIV</u> = MinVol = Tidal Volume x Rate
<u>Leoni SIMV/SIPPV</u> = Tidal Volume x Rate
<u>Leoni HFOV</u> = MinVol (Flow) is always 7L/min
<u>Leoni CPAP</u> = MinVol (Flow) is always 12L/min

Cylinder Volume.....

Total Ventilator Gas Flow.....

iNOmax Flow.....

Cylinder Duration...

Transfer Time...